【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底
,
是
的中点。
(1)证明:直线
平面
;
(2)点
在棱
上,且直线
与底面
所成角为
,求二面角
的余弦值。
![]()
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1) 取
的中点
,连结
,
,由题意证得
∥
,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:
,
,然后利用空间向量的相关结论可求得二面角
的余弦值为
.
试题解析:(1)取
中点
,连结
,
.
因为
为
的中点,所以
,
,由
得
,又![]()
所以
.四边形
为平行四边形,
.
又
,
,故![]()
(2)
![]()
由已知得
,以A为坐标原点,
的方向为x轴正方向,
为单位长,建立如图所示的空间直角坐标系A-xyz,则
则
,
,
,
,
,
则
![]()
因为BM与底面ABCD所成的角为45°,而
是底面ABCD的法向量,所以
, ![]()
即(x-1)+y-z=0
又M在棱PC上,学|科网设![]()
![]()
由①,②得![]()
所以M
,从而![]()
设
是平面ABM的法向量,则
![]()
所以可取m=(0,-
,2).于是![]()
因此二面角M-AB-D的余弦值为![]()
点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.
(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等,故有|cos θ|=|cos<m,n>|=
.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
:
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若圆
经过坐标原点和点
,且与直线
相切, 从圆
外一点
向该圆引切线
,
为切点,
(Ⅰ)求圆
的方程;
(Ⅱ)已知点
,且
, 试判断点
是否总在某一定直线
上,若是,求出
的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线
与
轴的交点为
,点
是直线
上两动点,且以
为直径的圆
过点
,圆
是否过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为
.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:
是直角三角形;
(ii)求
面积的最大值.
(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】边长为
的等边三角形内任一点到三边距离之和为定值,这个定值等于
;将这个结论推广到空间是:棱长为
的正四面体内任一点到各面距离之和等于________________.(具体数值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有关于
的一元二次方程
.
(Ⅰ)若
是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若
是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
(1)“若
,则
,
互为倒数”的逆命题;
(2)“面积相等的三角形全等”的否命题;
(3)“若
,则
无实数解”的否命题;
(4)命题:“空间中到一个正四面体的六条棱所在的直线距离均相等的点有且只有
个”; 其中真命题( )
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(2)(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com