【题目】设函数![]()
.
(1)求函数
的最小值;
(2)设
,讨论函数
的单调性;
(3)斜率为
的直线与曲线
交于
、![]()
两点,
求证:![]()
【答案】(1)
;(2)当
时,
在
上是增函数;当
时,
在
上单调递增,在
上单调递减;(3)见解析.
【解析】
(1)对函数
求导,求其单调区间,即可求出极值,可得最小值;(2)分别讨论
和
时函数
的单调性;(3)将直线斜率
用
表示出来,将要证的不等式转化为证
(
),最后讨论函数
(
)和
(
)单调性,即可证明原题.
(1)
,令
,得![]()
因为当
时
;当
时
,
所以当
时,![]()
(2)
,![]()
①当
时,恒有
,
在
上是增函数;
②当
时,
令
,得
,解得
;
令
,得
,解得
,
综上,当
时,
在
上是增函数;
当
时,
在
上单调递增,在
上单调递减
(3)
.
要证
,即证
,等价于证
,令
,
则只要证
,由
知
,故等价于证
(*).
① 设
,则
,故
在
上是增函数,
∴ 当
时,
,即
.
② 设
,则
,故
在
上是增函数,
∴ 当
时,
,即
.
由①②知(*)成立,
得证.
科目:高中数学 来源: 题型:
【题目】类比平面几何中的定理:△ABC中,若DE是△ABC的中位线,则有S△ADE∶S△ABC=1∶4;若三棱锥A-BCD有中截面EFG∥平面BCD,则截得三棱锥的体积与原三棱锥体积之间的关系式为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为区间
,若对于
内任意
,都有![]()
成立,则称函数
是区间
的“
函数”.
(1)判断函数
(
)是否是“
函数”?说明理由;
(2)已知
,求证:函数
(
)是“
函数”;
(3)设函数
是
,(
)上的“
函数”,
,且存在
使得
,试探讨函数
在区间
上零点个数,并用图象作出简要的说明(结果不需要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) | 2 | 4 | 5 | 6 | 8 |
每小时生产有缺点的零件数y(件) | 30 | 40 | 60 | 50 | 70 |
(1)画散点图;
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2﹣alnx﹣bx(a>0).
(Ⅰ)若a=1,b=3,求函数y=f(x)在(1,f(1))处的切线方程;
(Ⅱ)若f(x1)=f(x2)=0,且x1≠x2,证明:f′(
)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于回归分析的说法中错误的是( )
A. 回归直线一定过样本中心![]()
B. 残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适
C. 两个模型中残差平方和越小的模型拟合的效果越好
D. 甲、乙两个模型的
分别约为0.98和0.80,则模型乙的拟合效果更好
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com