精英家教网 > 高中数学 > 题目详情

【题目】设命题P:实数x满足2x2﹣5ax﹣3a2<0,其中a>0,命题q:实数x满足
(1)若a=2,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

【答案】
(1)解:a=2,则2x2﹣5ax﹣3a2<0可化为x2﹣5x﹣6<0,

解得:﹣1<x<6.

∴不等式的解集为

若p∧q为真,则p,q均为真,∴由 可得


(2)解: 2x2﹣5ax﹣3a2<0得:

若p是q的充分不必要条件,则

,则BA.

∴3a≥2且 ,即 ,∴实数a的取值范围是


【解析】(1)首先分别求出命题P与命题q的集合简化形式B与A;p∧q为真,则p,q均为真,实则是求B∩A.(2)由p是q的充分不必要条件,则 (q能推导出p,p推导不出q).则说明BA.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在x轴上,离心率为 ,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B. (Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线l不过点M,求证:直线MA、MB与x轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥ABCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,P、Q分别为线段AO,BC上的动点,且AP=CQ,求三棱锥PQCO体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是被严重破坏的频率分布表和频率分布直方图,根据残表和残图,则 p= , q=

分数段

频数

[60,70)

p

[70,80)

90

[80,90)

60

[90,100]

20

q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四名选手 A、B、C、D 参加射击、抛球、走独木桥三项比赛,每个选手在各项比赛中获得合格、不合格机会相等,比赛结束,评委们会根据选手表现给每位选手评定比赛成绩,根据比赛成绩,对前两名进行奖励.
(1)选手 D 至少获得两个合格的概率;
(2)选手 C、D 只有一人得到奖励的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1 . (Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 若函数g(x)=f(x)﹣k有3个零点,则实数k的取值范围为( )
A.(0,+∞)
B.(0,1)
C.[1,+∞)
D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,底面ABCD为边长为2对的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.

(1)判定AE与PD是否垂直,并说明理由;
(2)若PA=2,求二面角E﹣AF﹣C的余弦值.

查看答案和解析>>

同步练习册答案