精英家教网 > 高中数学 > 题目详情

已知点F( 1,0),⊙F与直线4x+3y+1=0相切,动圆M与⊙F及y轴都相切.
(I )求点M的轨迹C的方程;
(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向⊙F各引一条切线,切点 分别为P,Q,记α=∠PAF,β=∠QBF.求证sinα+sinβ是定值.

解:(Ⅰ)⊙F的半径r=1,∴⊙F的方程为(x-1)2+y2=1,
由题意动圆M与⊙F及y轴都相切,分以下情况:
(1)动圆M与⊙F及y轴都相切,但切点不是原点的情况:
作MH⊥y轴于H,则|MF|-1=|MH|,即|MF|=|MH|+1,
过M作直线x=-1的垂线MN,N为垂足,
则|MF|=|MN|,
∴点M的轨迹是以F为焦点,x=-1为准线的抛物线,
∴点M的轨迹C的方程为y2=4x(x≠0);
(2)动圆M与⊙F及y轴都相切且仅切于原点的情况:
此时点M的轨迹C的方程为y=0(x≠0,1);
(Ⅱ)对于(Ⅰ)中(1)的情况:
当l不与x轴垂直时,设直线l的方程为y=k(x-1),
得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),
,x1x2=1,
∴sinα+sinβ====1.
当l与x轴垂直时,也可得sinα+sinβ=1,
对于(Ⅰ)中(2)的情况不符合题意(即作直线l,交C于一个点或无数个点,而非两个交点).
综上,有sinα+sinβ=1.
分析:(Ⅰ)利用点到直线的距离公式及切线的性质、圆的标准方程即可得到⊙F的方程;动圆M与⊙F及y轴都相切分切点不是原点、切点是原点两种情况分别求出即可:
(Ⅱ)对直线l的斜率分存在和不存在两种情况:把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义即可得出.
点评:熟练掌握点到直线的距离公式、圆的标准方程及切线的性质、分类讨论的思想方法、直线的方程与抛物线的方程联立并利用根与系数的关系及抛物线的定义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足k1•k2=2,试推断:动直线DE是否过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,若
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)过点M(-1,0)作直线m交轨迹C于A,B两点.
(Ⅰ)记直线FA,FB的斜率分别为k1,k2,求k1+k2的值;
(Ⅱ)若线段AB上点R满足
|MA|
|MB|
=
|RA|
|RB|
,求证:RF⊥MF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,点P为平面上的动点,过点P作直线l的垂线,垂足为点Q,且
QP
FQ
=
PF
FQ
,则动点P的轨迹C的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),动点P到直线x=-2的距离比到F的距离大1.
(1)求动点P所在的曲线C的方程;
(2)A,B为曲线C上两动点,若|AF|+|BF|=4,求证:AB垂直平分线过定点,并求出该定点.

查看答案和解析>>

同步练习册答案