【题目】函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)=
.
(1)判断并证明f(x)在(0,+∞)上的单调性;
(2)求当x<0时,函数的解析式.
【答案】(1) f(x)在(0,+∞)上是减函数(2) f(x)=-
+x(x<0).
【解析】试题分析:(1)利用单调性定义判断f(x)在(0,+∞)上的单调性;(2) 设x<0,则-x>0,
从而有f(-x)=f(x)=-
+x,得到所求的表达式.
试题解析:
(1)证明 设0<x1<x2,则
f(x1)-f(x2)=(
-x1)-(
-x2)=
,
∵0<x1<x2,∴x1x2>0,x2-x1>0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上是减函数.
(2)解 设x<0,则-x>0,
∴f(-x)=-
-x,
又f(x)为偶函数,
∴f(-x)=f(x)=-
+x
即f(x)=-
+x(x<0).
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若
,CE∶EB=1∶4,求CE的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数
,使得原
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形
的对角线交于点
,边
所在直线的方程为
,点
在边
所在的直线上.
(1)求矩形
的外接圆的方程;
(2)已知直线
(
),求证:直线
与矩形
的外接圆恒相交,并求出相交的弦长最短时的直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
﹥
﹥0)的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
满足:
对任意
、![]()
恒成立,当
时,
.
(1)求证
在
上是单调递增函数;
(2)已知
,解关于
的不等式
;
(3)若
,且不等式
对任意
恒成立.求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PA=PB,O为AB的中点,OD⊥PC.
![]()
(1)求证:OC⊥PD;
(2)若PD与平面PAB所成的角为30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】吉安一中举行了一次“环保知识竞赛”活动,为了解本了次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为
分)作为样本(样本容量为
)进行统计. 按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
的数据).
(1)求样本容量
和频率分布直方图中的
的值;
(2)在选取的样本中,从竞赛学生成绩是
分以上(含
分)的同学中随机抽取
名同学到市政广场参加环保知识宣传的志愿者活动,设
表示所抽取的
名同学中得分在
的学生人数,求
的分布列及数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分别截取AE=AH=CF=CG=x(x>0),设四边形EFGH的面积为y.
![]()
(1)写出四边形EFGH的面积y与x之间的函数关系;
(2)求当x为何值时y取得最大值,最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com