【题目】已知圆
,直线
.
(1)若直线
与圆
交于不同的两点
,且
,求
的值;
(2)若
,
是直线
上的动点,过
作圆
的两条切线
,
,切点分别为
,
,求证:直线
过定点,并求出该定点的坐标.
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱
(侧棱垂直于底面,且底面是正三角形)中,
是棱
上一点.
![]()
(1)若
分别是
的中点,求证:
平面
;
(2)若
是
上靠近点
的一个三等分点,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过点
,且被
轴截得的线段长为4,记动圆圆心的轨迹为曲线
.
(1)求曲线
的方程;
(2)问:
轴上是否存在一定点
,使得对于曲线
上的任意两点
和
,当
时,恒有
与
的面积之比等于
?若存在,则求
点的坐标,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明:AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明:面AED⊥面A1FD1.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,
,短轴的两个端点分别为
,
.
(1)若
为等边三角形,求椭圆
的方程;
(2)若椭圆
的短轴长为2,过点
的直线
与椭圆
相交于
、
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的左、右焦点分别为
、
,且经过点![]()
(I)求椭圆C的方程:
(II)直线y=kx(k
R,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com