精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)定义在[-2,2]上,且在[0,2]上为减函数,则不等式:f(1-m)-f(m)≤0的解m应满足的条件为
-2≤1-m≤2
-2≤m≤2
|1-m|≥|m|
-2≤1-m≤2
-2≤m≤2
|1-m|≥|m|
.(只要求最多用三个式子写出满足的条件不要求算出m的范围,但能够求出m的范围的也给分.
分析:由题意,函数y=f(x)是定义在[-2,2]上的偶函数,而且在[0,2]上是减函数,可以判断出此函数在[-2,2]是先增后减,
由偶性质函数可把不等式f(1-m)<f(m)化为f(|1-m|)≤f(|m|),再由单调性即可得到m所满足的条件.
解答:解:由题意函数y=f(x)是定义在[-2,2]上的偶函数,而且在[0,2]上是减函数,
∵f(1-m)-f(m)≤0,
∴f(|1-m|)≤f(|m|),则|1-m|≥|m|,
所以m所满足的条件为:
-2≤1-m≤2
-2≤m≤2
|1-m|≥|m|

故答案为:
-2≤1-m≤2
-2≤m≤2
|1-m|≥|m|
点评:本题考查函数奇偶性与单调性的性质,解题的关键是由函数性质将抽象不等式转化为关于m的不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省三明市清流一中高二(下)第三次段考数学试卷(文科)(解析版) 题型:解答题

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市中大附中高一(上)期中数学试卷(解析版) 题型:解答题

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省名校高一(上)期中数学试卷(解析版) 题型:解答题

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省成都市六校协作体高一(上)期中数学试卷(解析版) 题型:解答题

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

同步练习册答案