精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是梯形,,,是正三角形,的中点,平面平面

(1)求证:平面

(2)在棱上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,说明理由.

【答案】(1)见证明(2)见解析

【解析】

(1)先证,由平面平面,可得平面;(2)以点为原点,分别以射线轴,轴,轴正半轴,建立空间直角坐标系,写出各点坐标,设,用含的式子求出平面和平面的法向量,由二面角的余弦值为列方程解出,从而得出的值.

(1)证明:因为,且

所以四边形是平行四边形,

从而,且

又在正三角形中,

从而在中,满足

所以

又平面平面,平面平面平面

所以平面

(2)由(1)知,且平面

从而平面

平面平面,所以

以点为原点,分别以射线轴,轴,轴正半轴,建立空间直角坐标系,

假设在棱上存在点满足题意,

,则

设平面的法向量,则

取得,得

有平面的一个法向量,所以

从而

因为,所以

所以在棱上存在点使得二面角的余弦值为,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)ax(ab∈Z),曲线yf(x)在点(2f(2))处的切线方

程为y3.

(1)f(x)的解析式;

(2)证明:曲线yf(x)上任一点的切线与直线x1和直线yx所围三角形的面积为定值,

并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,楔形几何体由一个三棱柱截去部分后所得,底面侧面,,楔面是边长为2的正三角形,点在侧面的射影是矩形的中心,点上,且

1)证明:平面

2)求楔面与侧面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=8内有一点P0-12),AB为过点P0且倾斜角为α的弦.

1)当α=时,求AB的长;

2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相交于两点,为原点,若.

1)求实数的值;

2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分別为a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面积S;

(2)DAC的中点,cosB=,BD=,ABC的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,的中点。

(Ⅰ)求证:平面

(Ⅱ)求异面直线所成角的余弦值;

(Ⅲ)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是(

A.命题,则的逆否命题是真命题

B.命题的否定是

C.为真命题,则为真命题

D.中,的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,已知某10张奖券中有6张有奖,其余4张没有奖,且有奖的6张奖券每张均可获得价值10元的奖品.某顾客从此10张奖券中任意抽取3.

1)求该顾客中奖的概率;

2)若约定抽取的3张奖券都有奖时,还要另奖价值6元的奖品,求该顾客获得的奖品总价值(元)的分布列和均值.

查看答案和解析>>

同步练习册答案