![]()
(1)求证:AF∥平面PEC;
(2)求证:平面PEC⊥平面PCD;
(3)设AD=2,CD=2
,求点A到平面PEC的距离.
剖析:对问题(1),关键是证明AF与平面PEC内的一条直线平行,为此可取PC的中点G,论证AF∥EG;对问题(2),可转化为证明线面垂直;对问题(3),可转化为求点F到平面PEC的距离,进而可以充分运用(2)的结论.
(1)证明:取PC的中点G,连结EG、FG.
∵F是PD的中点,
∴FG∥CD且FG=
CD.
而AE∥CD且AE=
CD,
∴EA∥GF且EA=GF,
故四边形EGFA是平行四边形,从而EG∥AF.
又AF
平面PEC,EG
平面PEC,
∴AF∥平面PEC.
(2)证明:∵PA⊥平面ABCD,
∴AD是PD在平面ABCD上的射影.
又CD⊥AD,
∴CD⊥PD,∠PDA就是二面角P-CD-B的平面角.
∴∠ADP=45°,则AF⊥PD.
又AF⊥CD,PD∩CD=D,
∴AF⊥平面PCD.
由(1),EG∥AF,
∴EG⊥平面PCD.
而EG
平面PEC,
∴平面PEC⊥平面PCD.
(3)解:过F作FH⊥PC交PC于点H,又平面PEC⊥平面PCD,则FH⊥平面PEC,
∴FH为点F到平面PEC的距离,而AF∥平面PEC,故FH等于点A到平面PEC的距离.
在△PFH与△PCD中,
∵∠FHP=∠CDP=90°,∠FPC为公共角,
∴△PFH∽△PCD,
=
.
∵AD=2,CD=2
,PF=
,PC=
=4,
∴FH=
·2
=1.
∴点A到平面PEC的距离为1.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| AE |
| AP |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com