精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,四边形AA1B1B为菱形,AA1=4,AC=3,BC=B1C=5,∠ABB1=60°,D为AB的中点.
(Ⅰ)求证:B1D⊥B1C1
(Ⅱ)求直线AA1与平面CB1D所成角的正弦值.
分析:(I)由已知结合勾股定理可证得AC⊥AB且AC⊥AB1,再由线面垂直的判定定理得到AB?平面AA1B1B,进而AC⊥B1D,进而根据等边三角形三线合一,得到AB⊥B1D,再由线面垂直的判定定理得B1D⊥平面ABC,进而得到B1D⊥B1C1
(Ⅱ)以D为坐标原点建立空间坐标系,求出各顶点的坐标,进而求出直线AA1的方向向量和平面CB1D的法向量,代入向量夹角公式,可得答案.
解答:证明:(I)∵四边形AA1B1B为菱形,
∴AB=AA1=4,
又∵AC=3,BC=B1C=5,
∴BC2=AB2+AC2
即AC⊥AB,
连接AB1
∵∠ABB1=60°,
∴AB1=AB=4,
B1C2=AB12+AC2
即AC⊥AB1
又∵AB1∩AB=A,AB1,AB?平面AA1B1B,
∴AC⊥平面AA1B1B,
又∵B1D?平面AA1B1B,
∴AC⊥B1D,
又∵D为AB的中点,
∴AB⊥B1D,
又∵AC∩AB=A,AC,AB?平面ABC,
∴B1D⊥平面ABC,
又∵BC?平面ABC,
∴B1D⊥BC,
又∵BC∥B1C1
∴B1D⊥B1C1
解:(II)以D为坐标原点建立空间坐标系,
精英家教网
则D(0,0,0),B1(0,2
3
,0),C(-2,0,3),A(-2,0,0),A1(-4,2
3
,0),
DB1
=(0,2
3
,0),
DC
=C(-2,0,3),
AA1
=(-2,2
3
,0),
设平面CB1D的一个法向量为
n
=(x,y,z),
n
DB1
n
DC 
得:
n
DB1
=0
n
DC 
=0

2
3
y=0
-2x+3z=0

令x=3,则
n
=(3,0,2),
设直线AA1与平面CB1D所成角为θ,
则sinθ=
|
n
AA1
|
|
n
|•|
AA1
|
=
6
13
×4
=
3
13
26
点评:本题考查的知识点是空间线面垂直的判定与性质,直线与平面所成的角,是空间立体几何的简单综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知三棱柱ABC-A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,在俯视图△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求证:BC⊥AC1
(2)在三棱柱ABC-A1B1C1中,若D是底边AB的中点,求证:AC1∥平面CDB1
(3)若三棱柱的高为5,求三视图中左视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案