精英家教网 > 高中数学 > 题目详情

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围;

(3)若,函数上的上界是,求的取值范围.

 

【答案】

(1)的值域为,故不存在常数,使成立

所以函数上不是有界函数。

(2)实数的取值范围为

(3)当时,的取值范围是

时,的取值范围是

【解析】[解]:(1)当时, 

因为上递减,所以,即的值域为

故不存在常数,使成立

所以函数上不是有界函数。   ……………4分(没有判断过程,扣2分)

(2)由题意知,上恒成立。………5分

,          

∴   上恒成立………6分

∴    ………7分

,由得 t≥1,

所以上递减,上递增,………9分(单调性不证,不扣分)

上的最大值为,  上的最小值为 

所以实数的取值范围为。…………………………………11分

(3),∵   m>0  ,      ∴  上递减,…12分

∴       即………13分

①当,即时,, ………14分

此时  ,………16分②当,即时,

此时  ,   ---------17分

综上所述,当时,的取值范围是

时,的取值范围是………18分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届四川成都七中实验学校高一3月月考数学试卷(解析版) 题型:选择题

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:

    ②     ③     ④

则其中是“保等比数列函数”的的序号为(   )

A.①②             B.③④             C.①③             D.②④

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省东莞市高三第三次月考理科数学试卷(解析版) 题型:选择题

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:

;   ②;    ③;    ④.

则其中是“保等比数列函数”的的序号为(    )

A.① ②                B.③ ④            C.① ③            D.② ④ 

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(湖北卷解析版) 题型:选择题

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:①;   ②;    ③;    ④.则其中是“保等比数列函数”的的序号为

A、① ②                B、③ ④            C、① ③            D、② ④

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(湖北卷解析版) 题型:选择题

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”。现有定义在上的如下函数:①;②;③;④。则其中是“保等比数列函数”的的序号为

A、①②  B、③④  C、①③   D、②④

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省高三第一次质量检测理科数学 题型:填空题

定义在上的函数,如果,则实数的取值范围为______

 

查看答案和解析>>

同步练习册答案