精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+x+2.
(Ⅰ)若a=-1,令函数g(x)=2x-f(x),求函数g(x)在(-1,2)上的极大值、极小值;
(Ⅱ)若函数f(x)在(-
13
,+∞)
上恒为单调递增函数,求实数a的取值范围.
分析:(Ⅰ)先求出函数g(x)=2x-f(x)的导函数,利用导函数求出原函数的单调区间,进而求出其极大值、极小值;
(Ⅱ)先求出其导函数,把函数f(x)在(-
1
3
,+∞)
上恒为单调递增函数,转化为其导函数的最小值恒大于等于0,利用二次函数在固定区间上求最值的方法求出导函数的最小值,再与0比即可求出实数a的取值范围.
解答:解:(Ⅰ)g(x)=2x-(x3-x2+x+2)=-x3+x2+x-2,所以g'(x)=-3x2+2x+1
由g'(x)=0得x=-
1
3
或x=1(12分)
x (-∞,-
1
3
)
-
1
3
(-
1
3
,1)
1 (1,+∞)
g'(x) - 0 + 0 -
g(x) -
59
27
-1
所以函数g(x)在x=-
1
3
处取得极小值-
59
27
;在x=1处取得极大值-(16分)
(Ⅱ)因为f'(x)=3x2+2ax+1的对称轴为x=-
a
3

(1)若-
a
3
≥-
1
3
即a≤1时,要使函数f(x)在(-
1
3
,+∞)
上恒为单调递增函数,则有△=4a2-12≤0,解得:-
3
≤a≤
3
,所以-
3
≤a≤1
;(8分)
(2)若-
a
3
<-
1
3
即a>1时,要使函数f(x)在(-
1
3
,+∞)
上恒为单调递增函数,则有f(-
1
3
)=3•(-
1
3
)2+2a•(-
1
3
)+1≥0
,解得:a≤2,所以1<a≤2;(10分)
综上,实数a的取值范围为-
3
≤a≤2
(12分)
点评:本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案