
(本小题满分12分)
证明:(Ⅰ)∵SD⊥底面ABCD,ABCD是正方形,∴CD⊥平面SAD,AD⊥平面SDC,
又在Rt△SDB中,

. …(1分)
以D为坐标原点,DA为x轴,DC为y轴,DS为z轴,建立空间直角坐标系(如图),
则A(1,0,0),B(1,1,0),C(0,1,0),S(0,0,1). …(2分)
设平面SBC的法向量为

,则

,

,
∵

,

,
∴

,∴可取

. …(4分)
∵CD⊥平面SAD,∴平面SAD的法向量

. …(5分)
∴

,
∴面ASD与面BSC所成二面角的大小为45°. …(6分)
(Ⅱ)∵

,∴

,

,
又∵

,∴DM⊥SB,
∴异面直线DM与SB所成角的大小为90°. …(9分)
(Ⅲ)由(Ⅰ)平面SBC的法向量为

,∵

,
∴

在

上的射影为

,
∴点D到平面SBC的距离为

. …(12分)
(特别说明:用传统解法每问应同步给分)
分析:(Ⅰ)以D为坐标原点,DA为x轴,DC为y轴,DS为z轴,建立空间直角坐标系,求出平面SBC的法向量,平面SAD的法向量,然后利用空间向量数量积公式求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,直接求出异面直线DM与SB对应的向量,利用空间向量数量积求解异面直线DM与SB所成角的大小;
(Ⅲ)通过平面的法向量,利用

在

上的射影公式,直接求点D到平面SBC的距离.
点评:本题考查空间向量的数量积的应用,二面角的求法,异面直线所成角的求法,点到平面的距离公式的应用,考查空间想象能力与计算能力.