【题目】设函数
,其中
、
.
(1)若曲线
在点
处的切线方程为
,求
,
的值;
(2)当
时,
恒成立,求满足条件的最小整数
的值.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
![]()
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,DA⊥AB,
DE=1,EC=
,EA=2,
∠ADC=
,∠BEC=
.
(Ⅰ)求sin∠CED的值;
(Ⅱ)求BE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,
,F为线段DE上的一点. ![]()
(1)求证:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的部分图像如图所示,将
的图象向右平移
个单位长度后得到函数
的图象.
![]()
(1)求函数
的解析式;
(2)在
中,角A,B,C满足
,且其外接圆的半径R=2,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生的视力情况,现采用随机抽样的方法从该校的
两班中各抽取
名学生进行视力检测,检测的数据如下:
班
名学生的视力检测结果: ![]()
班
名学生的视力检测结果: ![]()
(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生的视力较好?并计算
班的
名学生视力的方差;
(Ⅱ)现从
班的上述
名学生中随机选取
名,求这
名学生中至少有
名学生的视力低于
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com