精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,点D,E分别是边AB,AC上的一点,且满足AD= AB,AE= AC,若BE⊥CD,则cosA的最小值是

【答案】
【解析】解:如图所示,不妨设C(3,0),B(x,y),A(0,0).
∵AD= AB,AE= AC,∴E(1,0),D
∵BE⊥CD,
=(1﹣x,﹣y) = =0,
化为: +y2= .圆心G ,半径r=
设圆的切线方程为y=kx(取k>0).
= ,化为k2= ,解得k=
当AB与⊙G相切时,∠A最大,cosA最小.
此时tanA=
∴cosA= =
∴cosA的最小值为
所以答案是:

【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解答题。
(1)已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,求实数k的取值范围.
(2)关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,试确定函数的单调区间;

(2)若,且对于任意 恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和为Sn=﹣n2+12n.
(1)求{an}的通项公式;
(2)求数列{|an|}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,将函数图象向下平移个单位得到的图象,则

)求函数的最小正周期单调递增区间;

)求在区间上的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.

(1)求椭圆的标准方程;

(2)是否存在经过点且斜率为的直线与椭圆交于不同两点,使得向量共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为直角坐标系的坐标原点,双曲线 上有一点),点轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为 ,若平行四边形的面积为1,则双曲线的标准方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(3,4), 是单位向量.
(1)若 ,求
(2)若 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间的频率之比为

)求这些产品质量指标值落在区间的频率;

用分层抽样的方法在区间抽取一个容量为6的样本,将该样本看成一个总体,从中任意

抽取2件产品,求这2件产品都在区间内的概率

查看答案和解析>>

同步练习册答案