【题目】已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线交椭圆
于
,
两点,若点
关于
轴的对称点为
,证明直线
过定点.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求证:当x∈(0,π]时,f(x)<1;
(2)求证:当m>2时,对任意x0∈(0,π] ,存在x1∈(0,π]和x2∈(0,π](x1≠x2)使g(x1)=g(x2)=f(x0)成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果对于函数
定义域内任意的两个自变量的值
,
,当
时,都有
,且存在两个不相等的自变量值
,
,使得
,就称
为定义域上的“不严格的增函数”.下列所给的四个函数中为“不严格增函数”的是( )
A.
;B.
;
C.
;D.
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(Ⅰ)若曲线
在点
处的切线方程为
,其中
是自然对数的底数,求
的值:
(Ⅱ)若函数
是
内的减函数,求正数
的取值范围;
(Ⅲ)若方程
无实数根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标
,
,有一根旋杆将两个滑标连成一体,
,
为旋杆上的一点,且在
,
两点之间,且
,当滑标
在滑槽
内作往复运动,滑标
在滑槽
内随之运动时,将笔尖放置于
处可画出椭圆,记该椭圆为
.如图2所示,设
与
交于点
,以
所在的直线为
轴,以
所在的直线为
轴,建立平面直角坐标系.
![]()
(1)求椭圆
的方程;
(2)设
,
是椭圆
的左右顶点,点
为直线
上的动点,直线
,
分别交椭圆于
,
两点,求四边形
面积为
,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒肺炎
疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.
日期代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累计确诊人数 | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①
,②
对变量
和
的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差
):经过计算得
,
,
,
,其中
,
.
![]()
(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;
(2)根据(1)问选定的模型求出相应的回归方程(系数均保留一位小数);
(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数作出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com