精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是(

A.已知随机变量,若.

B.已知分类变量的随机变量的观察值为,则当的值越大时,有关的可信度越小.

C.在线性回归模型中,计算其相关指数,则可以理解为:解析变量对预报变量的贡献率约为

D.若对于变量组统计数据的线性回归模型中,相关指数.又知残差平方和为.那么.(注意:

【答案】ACD

【解析】

选项A,根据正态分布曲线的特点,关于直线对称,求出,即可判断;

选项B,根据独立性检验的方法和步骤,即可判断;

选项C,根据相关指数的意义即可判断;

选项D,根据相关指数的计算公式即可判断.

解:对于选项A,曲线关于对称,由,则,则,选项A正确;

对于选项B,对分类变量的随机变量的观察值来说,越大,有关的可信度越大,选项B错误;

对于选项C,解析变量对预报变量的贡献率约为,选项C正确;

对于选项D,根据公式,其中,代入求出,选项D正确.

故选:ACD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)若的两根分别为某三角形两内角的正弦值,求m的取值范围;

2)问是否存在实数m,使得的两根是直角三角形两个锐角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正数,直线y=x﹣2a+1与曲线y=ex+b﹣1相切,则的最小值为(  )

A. 9 B. 7 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.

1)求一天内被感染人数为的概率的关系式和的数学期望;

2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.

i)求数列的通项公式,并证明数列为等比数列;

ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取

(结果保留整数,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|﹣|x﹣2|.

(1)当a=﹣3时,求不等式f(x)<2的解集;

(2)若x∈[1,2]时不等式f(x)<2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)讨论f(x)的单调性;

2)当x>0时,f(x)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的缴纳,

年份

2014

2015

2016

2017

2018

t

1

2

3

4

5

y

270

330

390

460

550

某企业员工甲在2014年至2018年各年中每月所撒纳的养老保险数额y(单位:元)与年份序号t的统计如下表:

1)求出t关于t的线性回归方程

2)试预测2019年该员工的月平均工资为多少元?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

(注:,其中

查看答案和解析>>

同步练习册答案