精英家教网 > 高中数学 > 题目详情
在△ABC中,已知sinC=
sinA+sinBcosA+cosB
,则△ABC的形状是
 
分析:利用三角恒等变换公式将公式变形,转化方向是变成简单的三角方程求角的值,通过角的值来确定△ABC的形状.
解答:证明:∵在△ABC中,sinC=
sinA+sinB
cosA+cosB

∴sin(A+B)=
2sin
A+B
2
×cos
A-B
2
2cos
A+B
2
cos
A-B
2

∴2sin
A+B
2
cos
A+B
2
=
sin
A+B
2
cos
A+B
2

∴2cos2
A+B
2
-1=0
∴cos(A+B)=0
∴A+B=
π
2
,即C=
π
2

∴△ABC是直角三角形.
故应填直角三角形.
点评:考查利用三角恒等变换的公式进行灵活变形的能力,用来训练答题者掌握相关公式的熟练程度及选择变形方向的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,则
AB
AC
的值为(  )
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,则xy的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,则B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P为线段AB上的一点,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,则
1
x
+
1
y
的最小值为
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

在△ABC中,已知SABC(a2+b2),求ABC

查看答案和解析>>

同步练习册答案