精英家教网 > 高中数学 > 题目详情
如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求二面角B-FC-G的正切值.
分析:(1)连CG,FG,由已知中F是BE的中点,结合三角形中位线的性质,可得FG平行且等于AE的一半,又由EA、CD都垂直于平面ABC,且EA=2a,DC=a,可得四边形DEGC是平行四边形,进而得到DF∥CG,由线面平行的判定定理即可得到FD∥平面ABC;
(2)易知BG⊥平面FCG,所以△FCG为△BFC的射影,故分别计算面积可求二面角的余弦值,从而得解.
解答:证明:(1)连CG,FG,则四边形DEGC是平行四边形,得到DF∥CG
DF?平面ABC,CG?平面ABC
所以FD∥平面ABC;
(2)设二面角B-FC-G的大小为α
易知BG⊥平面FCG,所以△FCG为△BFC的射影
∴cosα=
S△FCG
S△BFC
=
21
7

∴tanα=
2
3
3
点评:本题以多面体为载体,考查直线与平面平行的判定,熟练掌握线面平行的判定方法及证明步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,几何体ABCD中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB何AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3)求二面角B-FC-G的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,几何体ABCD-B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求证:AC∥面DB1E.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

如图,几何体ABCD中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB何AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3)求二面角B-FC-G的正切值.

查看答案和解析>>

科目:高中数学 来源:2013年山东省青岛市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

同步练习册答案