精英家教网 > 高中数学 > 题目详情

求证:2|x+2|+|x+1|≥1当且仅当x=-2时,“=”号成立。

答案:
解析:

证明:|x+2|+|x+1|≥|(x+2)-(x+1)|=1,

当且仅当(x+2)(x+1)≤0,即-2≤x≤-1时“=”号成立;

又|x+2|≥0,当且仅当x=-2时,“=”号成立,

∴2|x+2|+|x+1|≥1,当x=-2时,“=”号成立。


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2
(1)求证:f(x)是奇函数;
(2)试问:在-2≤x≤2时,f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
1
2
f(bx)-f(x)>
1
2
f(b2x)-f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是f(x)=
a
3
x3+
b-1
2
x2+x(a,b∈R,a>0)
的两个极值点,f(x)的导函数是y=f′(x)
(Ⅰ)如果x1<2<x2<4,求证:f′(-2)>3;
(Ⅱ)如果|x1|<2,|x2-x1|=2,求b的取值范围;
(Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)时,函数g(x)=f′(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)设向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,满足|
s
|+|
t
 |=2
2
,已知两定点A(1,0),B(-1,0),动点P(x,y),
(1)求动点P(x,y)的轨迹C的方程;
(2)已知直线m:y=x+t交轨迹C于两点M,N,(A,B在直线MN两侧),求四边形MANB的面积的最大值.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),求证:线段OG的长为定值.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

求证:2|x+2|+|x+1|≥1当且仅当x=-2时,“=”号成立。

查看答案和解析>>

同步练习册答案