ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1Ϊµ½¶¨µãF(
3
2
£¬
1
2
)
µÄ¾àÀëÓëµ½¶¨Ö±Ïßl1£º
3
x+y+2=0
µÄ¾àÀëÏàµÈµÄ¶¯µãPµÄ¹ì¼££¬ÇúÏßC2ÊÇÓÉÇúÏßC1ÈÆ×ø±êÔ­µãO°´Ë³Ê±Õë·½ÏòÐýת30¡ãÐγɵģ®
£¨1£©ÇóÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±ê£¬ÒÔ¼°ÇúÏßC2µÄ·½³Ì£»
£¨2£©¹ý¶¨µãM0£¨m£¬0£©£¨m£¾2£©µÄÖ±Ïßl2½»ÇúÏßC2ÓÚA¡¢BÁ½µã£¬ÒÑÖªÇúÏßC2ÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl2¶Ô³Æ£®ÎÊ£ºÏÒ³¤|CD|ÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬ÇóÆä×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒ⣬¿ÉÖªÇúÏßC1ΪÅ×ÎïÏߣ¬²¢ÇÒÓÐ
(x-
3
2
)
2
+(y-
1
2
)
2
=
1
2
|
3
x+y+2|
£¬
»¯¼ò£¬µÃÅ×ÎïÏßC1µÄ·½³ÌΪ£ºx2+3y2-2
3
xy-8
3
x-8y=0
£®
Áîx=0£¬µÃy=0»òy=
8
3
£¬
Áîy=0£¬µÃx=0»òx=8
3
£¬
¡àÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©ºÍ(0£¬
8
3
)
£¬(8
3
£¬0)
£®
ÓÉÌâÒâ¿ÉÖª£¬ÇúÏßC1ΪÅ×ÎïÏߣ¬¹ý½¹µãÓë×¼Ïß´¹Ö±µÄÖ±ÏßΪy-
1
2
=
1
3
(x-
3
2
)
£¬»¯Îªy=
3
3
x
£®
¿ÉÖª´Ë¶Ô³ÆÖá¹ýÔ­µã£¬Çãб½ÇΪ30¡ã£®
ÓÖ½¹µãF(
3
2
£¬
1
2
)
µ½l1£ºy=-
3
x-2
µÄ¾àÀëΪ|
3
¡Á
3
2
+
1
2
+2
(
3
)
2
+12
|=2
£®
¡àC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÔòÖ±ÏßCDµÄ·½³ÌΪy=-
1
k
x+b
£¬
Ôò
y=-
1
k
x+b
y2=4x.
µÃy2+4ky-4kb=0£¬
¡à¡÷=16k£¨k+b£©£¾0¢Ù
¡ày1+y2=-4k£¬y1•y2=-4kb£¬
ÉèÏÒCDµÄÖеãΪG£¨x3£¬y3£©£¬Ôòy3=-2k£¬x3=k£¨b+2k£©£®
¡ßG£¨x3£¬y3£©ÔÚÖ±Ïßl2ÉÏ£¬-2k=k£¨bk+2k2-m£©£¬¼´b=
m-2-2k2
k
¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ0£¼k2£¼m-2£¬
|CD|=
1+(-k)2
•|y1-y2|
=
1+k2
(y1+y2)2-4y1y2
=4
-(k2-
m-3
2
)
2
+(
m-1
2
)
2

Éèt=k2£¬Ôò0£¼t£¼m-2£®
¹¹Ô캯Êýf(t)=4
-(t-
m-3
2
)
2
+(
m-1
2
)
2
£¬0£¼t£¼m-2£®
ÓÉÒÑÖªm£¾2£¬µ±
m-2£¾0
m-3£¼0
£¬¼´2£¼m¡Ü3ʱ£¬f£¨t£©ÎÞ×î´óÖµ£¬ËùÒÔÏÒ³¤|CD|²»´æÔÚ×î´óÖµ£®
µ±m£¾3ʱ£¬f£¨t£©ÓÐ×î´óÖµ2£¨m-1£©£¬¼´ÏÒ³¤|CD|ÓÐ×î´óÖµ2£¨m-1£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÔ²ÐÄÔÚÖ±Ïßy=x+4ÉÏ£¬°ë¾¶Îª2
2
µÄÔ²C¾­¹ý×ø±êÔ­µãO£¬ÍÖÔ²
x2
a2
+
y2
9
=1(a£¾0)
ÓëÔ²CµÄÒ»¸ö½»µãµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ10£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©ÈôFΪÍÖÔ²µÄÓÒ½¹µã£¬µãPÔÚÔ²CÉÏ£¬ÇÒÂú×ãPF=4£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Èñ½Ç¦ÁºÍ¶Û½Ç¦ÂµÄÖձ߷ֱðÓ뵥λԲ½»ÓÚA£¬BÁ½µã£®ÈôµãAµÄºá×ø±êÊÇ
3
5
£¬µãBµÄ×Ý×ø±êÊÇ
12
13
£¬Ôòsin£¨¦Á+¦Â£©µÄÖµÊÇ
16
65
16
65
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Èô½¹µãÔÚxÖáµÄÍÖÔ²
x2
m
+
y2
3
=1
µÄÀëÐÄÂÊΪ
1
2
£¬ÔòmµÄֵΪ
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©ÖÝÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¨0£¬1£©£¬B£¨0£¬-1£©£¬C£¨t£¬0£©£¬D(
3t
£¬0)
£¬ÆäÖÐt¡Ù0£®ÉèÖ±ÏßACÓëBDµÄ½»µãΪP£¬Ç󶯵ãPµÄ¹ì¼£µÄ²ÎÊý·½³Ì£¨ÒÔtΪ²ÎÊý£©¼°ÆÕͨ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶«Ý¸Ò»Ä££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó½¹µãΪF1£¨-1£¬0£©£¬ÇÒÍÖÔ²CµÄÀëÐÄÂÊe=
1
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²CµÄÉÏ϶¥µã·Ö±ðΪA1£¬A2£¬QÊÇÍÖÔ²CÉÏÒìÓÚA1£¬A2µÄÈÎÒ»µã£¬Ö±ÏßQA1£¬QA2·Ö±ð½»xÖáÓÚµãS£¬T£¬Ö¤Ã÷£º|OS|•|OT|Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£»
£¨3£©ÔÚÍÖÔ²CÉÏ£¬ÊÇ·ñ´æÔÚµãM£¨m£¬n£©£¬Ê¹µÃÖ±Ïßl£ºmx+ny=2ÓëÔ²O£ºx2+y2=
16
7
ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡÷OABµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê¼°¶ÔÓ¦µÄ¡÷OABµÄÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸