【题目】数列{
n}中
1=3,已知点(
n,
n+1)在直线y=x+2上,
(1)求数列{
n}的通项公式;
(2)若bn=
n3n,求数列{bn}的前n项和Tn.
【答案】(1)
;(2)![]()
【解析】
(1)把点(
n,
n+1)代入直线y=x+2中可知数列{
n}是以3为首项,以2为公差的等差数,进而利用等差数列的通项公式求得答案.
(2)把(1)中求得
n代入bn=
n3n,利用错位相减法求得数列{bn}的前n项和Tn.
(1)∵点(
n,
n+1)在直线y=x+2上.∴数列{
n}是以3为首项,以2为公差的等差数列,
∴
n=3+2(n﹣1)=2n+1.
(2)∵bn=
n3n,∴bn=(2n+1)3n
∴Tn=3×3+5×32+7×33+…+(2n﹣1)3n﹣1+(2n+1)3n①
∴3Tn=3×32+5×33+…+(2n﹣1)3n+(2n+1)3n+1②
由①﹣②得﹣2Tn=3×3+2(32+33+...+3n)﹣(2n+1)3n+1
=
=﹣2n3n+1
∴Tn=n3n+1.
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某公园内有两条道路
,
,现计划在
上选择一点
,新建道路
,并把
所在的区域改造成绿化区域.已知
,
.
(1)若绿化区域
的面积为1
,求道路
的长度;
(2)若绿化区域
改造成本为10万元/
,新建道路
成本为10万元/
.设
(
),当
为何值时,该计划所需总费用最小?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a,在
到
之间的数据个数为b,则a,b的值分别为( )
![]()
A.
,78
B.
,83
C.
,78
D.
,83
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在平行于
轴的直线
上,且
与
轴的交点为
,动点
满足
平行于
轴,且
.
(1)求出
点的轨迹方程.
(2)设点
,
,求
的最小值,并写出此时
点的坐标.
(3)过点
的直线与
点的轨迹交于
.
两点,求证
.
两点的横坐标乘积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
与
轴交于
、
两点(点
在点
的左侧),
、
是分别过
、
点的圆
的切线,过此圆上的另一个点
(
点是圆上任一不与
、
重合的动点)作此圆的切线,分别交
、
于
、
两点,且
、
两直线交于点
.
(
)设切点
坐标为
,求证:切线
的方程为
.
(
)设点
坐标为
,试写出
与
的关系表达式(写出详细推理与计算过程).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com