精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)单调递增,若f(x2-2x+a)+f(2-ax)>0对x∈(1,+∞)恒成立,则实数a的取值范围为
(-∞,2)
(-∞,2)
分析:根据定义在R上的奇函数f(x)单调递增,可将f(x2-2x+a)+f(2-ax)>0对x∈(1,+∞)恒成立,转化为a<
x2-2x+2
x-1
=(x-1)+
1
x-1
在x∈(1,+∞)恒成立,根据基本不等式求出(x-1)+
1
x-1
的最值,可得实数a的取值范围
解答:解:∵函数f(x)是定义在R上的奇函数f(x)单调递增,
若f(x2-2x+a)+f(2-ax)>0在x∈(1,+∞)恒成立,
即f(x2-2x+a)>-f(2-ax)=f(ax-2)
即x2-2x+a>ax-2
即x2-2x+2>ax-a
即a<
x2-2x+2
x-1
=(x-1)+
1
x-1
在x∈(1,+∞)恒成立,
∵x∈(1,+∞)时,(x-1)+
1
x-1
≥2
故a<2
故实数a的取值范围为(-∞,2)
故答案为:(-∞,2)
点评:本题考查的知识点是函数的奇偶性,函数的单调性,函数恒成立问题,基本不等式,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案