分析 对第(1)问,将a=2代入函数的解析式中,利用分段讨论法解绝对值不等式即可;
对第(2)问,先由已知解集{x|0≤x≤2}确定a值,再将“m+2n”改写为“(m+2n)($\frac{1}{m}$+$\frac{1}{2n}$)”,展开后利用基本不等式可完成证明.
解答 解:(1)当a=2时,不等式f(x)≥4-|x-1|即为|x-2|≥4-|x-1|,
①当x≤1时,原不等式化为2-x≥4+(x-1),得x≤-$\frac{1}{2}$,
故x≤-$\frac{1}{2}$;
②当1<x<2时,原不等式化为2-x≥4-(x-1),得2≥5,
故1<x<2不是原不等式的解;
③当x≥2时,原不等式化为x-2≥4-(x-1),得x≥$\frac{7}{2}$,
故x≥$\frac{7}{2}$.
综合①、②、③知,原不等式的解集为(-∞,-$\frac{1}{2}$)∪[$\frac{7}{2}$,+∞).
(2)证明:由f(x)≤1得|x-a|≤1,从而-1+a≤x≤1+a,
∵f(x)≤1的解集为{x|0≤x≤2},
∴$\left\{\begin{array}{l}{-1+a=0}\\{1+a=2}\end{array}\right.$
∴得a=1,∴$\frac{1}{m}$+$\frac{1}{2n}$=a=1.
又m>0,n>0,∴m+2n=(m+2n)($\frac{1}{m}$+$\frac{1}{2n}$)=2+($\frac{2n}{m}$+$\frac{m}{2n}$)≥2+2$\sqrt{\frac{2n}{m}•\frac{m}{2n}}$=4,
当且仅当$\frac{2n}{m}$=$\frac{m}{2n}$即m=2n时及m=2,n=1时,等号成立,m+2n=4,
故m+2n≥4,得证.
点评 本题考查基本不等式和绝对值不等式的解法,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Y~N(aμ,σ2) | B. | Y~N(0,1) | C. | Y~N($\frac{μ}{a}$,$\frac{σ2}{b}$) | D. | Y~N(aμ+b,a2σ2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com