精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lnxsinx+axa0).

1)若a1,求证:当x1)时,fx)<2x1

2)若fx)在(02π)上有且仅有1个极值点,求a的取值范围.

【答案】1)详见解析;(2)(01).

【解析】

1)构造函数gx)=fx)﹣(2x1),对其求导研究其在x单调性,即可证明结论;

2)先对fx)求导,然后把fx)在(02π)上有且仅有1个极值点转化为的零点问题,利用ya0)与函数ycosxx0)的图象只有一个交点求出a的取值范围即可.

解:(1)证明:当a1时,fx)=lnxsinx+x,令gx)=fx)﹣(2x1)=lnxsinxx+1x

,∴gx)在(1)上单调递减,

gx)<g1)=﹣sin10,所以fx)<2x1

2)解:由题知,令,所以

在(0,2π)上有且仅有1个极值点,

∴函数ya0)与函数ycosxx0)的图象只有一个交点,

,即

所以a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数a为常数)和k为常数),有以下命题:①当时,函数没有零点;②当时,若恰有3个不同的零点,则;③对任意的,总存在实数,使得4个不同的零点,且成等比数列.其中的真命题是_____(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数在点处的切线的斜率为2,求的值;

2)讨论函数的单调性;

3)若函数有两个不同极值点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式e2xalnxa恒成立,则实数a的取值范围是(

A.[02e]B.(﹣∞,2e]C.[02e2]D.(﹣∞,2e2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,EF分别为边的中点.现将沿着折叠到的位置,使得平面平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E,过右焦点F的直线l与椭圆E交于AB两点(AB两点不在x轴上),椭圆EAB两点处的切线交于P,点P在定直线.

1)记点,求过点与椭圆E相切的直线方程;

2)以为直径的圆过点F,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,且直线l与曲线C交于MN两点.

1)求直线l的普通方程以及曲线C的直角坐标方程;

2)若曲线C外一点恰好落在直线l上,且,求mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为.

.

①求数列的通项公式;

②若,求正整数的值;

,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案