精英家教网 > 高中数学 > 题目详情
精英家教网如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC中点,AF=AB=BC=FE=
12
AD
(I)求证:BF⊥DM
(Ⅱ)求二面角A-CD-E的余弦值.
分析:(I)设P为AD的中点,连接EP,PC,所以EF
.
.
AP
.
.
BC,所以FA∥EP,可得EP⊥平面ABCD,所以EP⊥PC,EP⊥AD,再结合直角三角形的性质可得:ED=CD,进而得到:DM⊥CE,又BF∥EC,所以DM⊥BF.
(II)设Q为CD的中点,连接PQ,EQ,易证∠EQP为二面角A-CD-E的平面角,在直角三角形EQP中求出此角即可.
解答:精英家教网解:(I)证明:设P为AD的中点,连接EP,PC,
所以由已知,EF
.
.
AP
.
.
BC
∴EP=PC,FA∥EP,EC∥BF,AB∥PC…(2分)
又∵FA⊥平面ABCD,
∴EP⊥平面ABCD
因为PC、AD?平面ABCD
所以EP⊥PC,EP⊥AD
设FA=a,则EP=PC=PD=a,
ED=CD=
2
a
…(5分)
∵M为EC的中点,
∴DM⊥CE
∵BF∥EC
∴DM⊥BF.…(6分)
(II)取CD的中点Q,连接PQ,EQ
由(I)知PC=PD,CE=DE
∴PQ⊥CD,EQ⊥CD
∴∠EQP为二面角A-CD-E的平面角…(10分)
由(I)可得,在等边△ECD中EQ=
6
2
a

在等腰Rt△CPD中,PQ=
2
2
a

Rt△EPQ中,cos∠EQP=
PQ
EQ
=
3
3

故二面角A-CD-E的余弦值为
3
3
.…(12分)
点评:本小题考查线线垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想像能力、运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=
3
,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且BF=
1
2
,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在五面体ABC-DEF中,四边形BCFE 是矩形,DE⊥平面BCFE.
求证:(1)BC⊥平面ABED;
(2)CF∥AD.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省鞍山一中高考数学五模试卷(理科)(解析版) 题型:解答题

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学预测试卷2(文科)(解析版) 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

同步练习册答案