精英家教网 > 高中数学 > 题目详情

已知平面向量数学公式=(数学公式,-1),数学公式=(数学公式数学公式).
(I)若存在实数k和t,使得数学公式=数学公式+(t2-3)数学公式数学公式=-k数学公式+数学公式,且数学公式数学公式,试求函数的关系式k=f(t);
(II)根据(I)结论,确定k=f(t)的单调区间.

解:(I)∵


,∴

∴t3-3t-4k=0
即k=

(II)由(I)知,k=f(t)=

令k′<0得-1<t<1,令k′>0得t<0或t>1
故k=f(t)的单调递减区间是[-1,1];
单调递增区间是(-∞,-1],[1,+∞).
分析:(I)利用向量模的坐标公式求出向量的模,利用向量垂直的充要条件列出方程,将方程变形表示出k.
(II)求出函数f(t)的导数,令导数大于0,求出不等式的解集即为单调递增区间;令导函数小于0求出不等式的解集为单调递减区间.
点评:本题考查向量模的坐标公式;向量垂直的充要条件;利用导数求函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知平面向量a=(x,1),b=(-x,x2),则向量a+b(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-3),
b
=(4,-2),λ
a
+
b
a
垂直,则λ是(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=1,|
b
|=2
a
b
的夹角为60°,则“m=1”是“(
a
-m
b
)⊥
a
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)已知平面向量
a
b
的夹角为
π
6
,且
a
b
=3,|
a
|=3,则|
b
|等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(m,1),
b
=(m2
1
9
)
,且
c
=(1,n)
d
=(
1
4
n2)
,满足
a
c
b
d
=1
的解(m,n)仅有一组,则实数λ的值为(  )

查看答案和解析>>

同步练习册答案