精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2.P是两条曲线的一个交点,则|PF1|2+|PF2|2=(  )
分析:先根据双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2,根据点P为椭圆和双曲线的一个交点结合定义求出|PF1|与|PF2|的表达式,代入即可求出|PF1|2+|PF2|2的值.
解答:解:因为双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2
设P在双曲线的右支上,左、右焦点F1、F2
利用椭圆以及双曲线的定义可得:|PF1|+|PF2|=2
m

|PF1|-|PF2|=2
a

由①②得:|PF1|=
m
+
a
,|PF2|=
m
-
a

∴|PF1|2+|PF2|2=2(m+a).
故选B.
点评:本题主要考查圆锥曲线的综合问题.解决本题的关键在于根据双曲线和椭圆的定义得到|PF1|与|PF2|的表达式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A、
1
25
B、
1
9
C、
1
5
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)抛物线y2=2px(p>0)上一点M(1,m) (m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于
1
9
1
9

查看答案和解析>>

科目:高中数学 来源:天津一模 题型:填空题

抛物线y2=2px(p>0)上一点M(1,m) (m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于______.

查看答案和解析>>

科目:高中数学 来源:烟台一模 题型:单选题

已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A.
1
25
B.
1
9
C.
1
5
D.
1
3

查看答案和解析>>

同步练习册答案