【题目】二次函数f(x)=ax2+2a是区间[﹣a,a2]上的偶函数,又g(x)=f(x﹣1),则g(0),g(
),g(3)的大小关系是( )
A.g(
)<g(0)<g(3)
B.g(0)<g(
)<g(3)??
C.g(
)<g(3)<g(0)
D.g(3)<g(
)<g(0)
科目:高中数学 来源: 题型:
【题目】已知
=(sinx,cosx),
=(sinx,k),
=(﹣2cosx,sinx﹣k).
(1)当x∈[0,
]时,求|
+
|的取值范围;
(2)若g(x)=(
+
)
,求当k为何值时,g(x)的最小值为﹣
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+3)=﹣f(x),且当x∈[0,3)时,f(x)=log4(x+1),给出下列命题:
①f(2015)>f(2014);
②函数f(x)在定义域上是周期为3的函数;
③直线x﹣3y=0与函数f(x)的图象有2个交点;
④函数f(x)的值域为[0,1).
其中不正确的命题个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的方程为y2=10x,直线l的参数方程为
(t为参数),以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程和直线l的普通方程;
(2)设直线l与曲线C交于A、B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为
,边界忽略不计)即为中奖·
乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是
,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
![]()
(Ⅰ)求实数
的值;
(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】偶函数f(x)满足f(1﹣x)=f(1+x),且在x∈[0,1]时,f(x)=
,若直线kx﹣y+k=0(k>0)与函数f(x)的图象有且仅有三个交点,则k的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
关于直线
对称的圆为
.
(1)求圆
的方程;
(2)过点
作直线
与圆
交于
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=
.
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x3﹣2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com