精英家教网 > 高中数学 > 题目详情
(20)

已知函数,其中为常数。

(Ⅰ)若,讨论函数的单调性;

(Ⅱ)若,且,试证:

解:(I)求导得

,故方程有两根:

,解得

又令,解得

故当时,是增函数:当时,也是增函数:但当时,是减函数.

(II)易知因此

所以,由已知条件得

因此

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Acos2ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(上海春卷20)已知函数f(x)=loga(8-2x)(a>0且a≠0)
(1)若函数f(x)的反函数是其本身,求a的值;
(2)当a>1时,求函数y=f(x)+f(-x)的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省皖南八校高三第三次联考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=Acos2ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)=   

查看答案和解析>>

科目:高中数学 来源:安徽模拟 题型:填空题

已知函数f(x)=Acos2ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)=______.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

同步练习册答案