精英家教网 > 高中数学 > 题目详情
选修4-1 几何证明选讲
圆的两弦AB、CD交于点F,从F点引BC的平行线和直线AD交于P,再从P引这个圆的切线,切点是Q.
求证:PF=PQ.
分析:因为A,B,C,D四点共圆,所以∠ADF=∠ABC.因为PF∥BC,所以∠AFP=∠FQP.再由∠APF=∠FPA,得△APF∽△FPQ.由此能够证明PF=PQ.
解答:证明:因为A,B,C,D四点共圆,
所以∠ADF=∠ABC.
因为PF∥BC,所以∠AFP=∠ABC.
所以∠AFP=∠FQP.
又因为∠APF=∠FPA,
所以△APF∽△FPQ.所以
PF
PA
=
PD
PF

所以PF2=PA?PD.    
因为PQ与圆相切,所以PQ2=PA?PD.
所以PF2=PQ2.所以PF=PQ.
点评:本题考查与圆有关的线段的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1 几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.选修4-2 矩阵与变换
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵.
C.选修4-4 坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,
曲线C1ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
(t∈R)交于A、B两点.求证:OA⊥OB.
D.选修4-5 不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)(选修4-1 几何证明选讲)
如图,已知CB是⊙O的一条弦,A是⊙O上任意一点,过点A作⊙O的切线交直线CB于点P,D为⊙O上一点,且∠ABD=∠ABP.
求证:AB2=BP•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•镇江二模)(选修4-1 几何证明选讲)
如图,ABCD为圆内接四边形,延长两组对边分别交于点E,F,∠AFB的平分线分别交AB,CD于点H,K.求证:EH=EK.

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生在第23,24,25题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.
选修4-1  几何证明选讲
已知C点在⊙O的直径BE的延长线上,CA切⊙O于A点,CD是∠ACB的平分线,交AE于点F,交AB于点D.
(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求
ACBC
的值.

查看答案和解析>>

同步练习册答案