【题目】【2014福建,文22】已知函数
(
为常数)的图像与
轴交于点
,曲线
在点
处的切线斜率为
.
(1)求
的值及函数
的极值;
(2)证明:当
时,![]()
(3)证明:对任意给定的正数
,总存在
,使得当
时,恒有![]()
【答案】(1)当
时,
有极小值
,
无极大值.
(2)见解析.(3)见解析.
【解析】
试题分析:(1)由
,得
.
从而
.
令
,得驻点
.讨论可知:
当
时,
,
单调递减;
当
时,
,
单调递增.
当
时,
有极小值
,
无极大值.
(2)令
,则
.
根据
,知
在R上单调递增,又
,
当
时,由
,即得.
(3)思路一:对任意给定的正数c,取
,
根据
.得到当
时,
.
思路二:令
,转化得到只需
成立.
分
,
,应用导数研究
的单调性.
思路三:就①
,②
,加以讨论.
试题解析:
【解法一】
(1)由
,得
.
又
,得
.
所以
,
.
令
,得
.
当
时,
,
单调递减;
当
时,
,
单调递增.
所以当
时,
有极小值,
且极小值为
,
无极大值.
(2)令
,则
.
由(1)得,
,即
.
所以
在R上单调递增,又
,
所以当
时,
,即
.
(3)对任意给定的正数c,取
,
由(2)知,当
时,
.
所以当
时,
,即
.
因此,对任意给定的正数c,总存在
,当
时,恒有
.
【解法二】
(1)同解法一.
(2)同解法一.
(3)令
,要使不等式
成立,只要
成立.
而要使
成立,则只需
,即
成立.
①若
,则
,易知当
时,
成立.
即对任意
,取
,当
时,恒有
.
②若
,令
,则
,
所以当
时,
,
在
内单调递增.
取
,
,
易知
,
,所以
.
因此对任意
,取
,当
时,恒有
.
综上,对任意给定的正数c,总存在
,当
时,恒有
.
【解法三】
(1)同解法一.
(2)同解法一.
(3)①若
,取
,
由(2)的证明过程知,
,
所以当
时,有
,即
.
②若
,
令
,则
,
令
得
.
当
时,
,
单调递增.
取
,
,
易知
,又
在
内单调递增,
所以当
时,恒有
,即
.
综上,对任意给定的正数c,总存在
,当
时,恒有
.
科目:高中数学 来源: 题型:
【题目】据市场分析,南雄市精细化工园某公司生产一种化工产品,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.写出月总成本y(万元)关于月产量x(吨)的函数关系.已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形
为直角梯形,
,
,
,
,
为
中点,
,
与
交于点
,沿
将四边形
折起,连接
.
![]()
(1)求证:
平面
;
(2)若平面
平面
.
(I)求二面角
的平面角的大小;
(II)线段
上是否存在点
,使
平面
,若存在,求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·哈尔滨高二检测)如图,下列四个几何体中,它们的三视图(正视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是________.
![]()
(1)棱长为2的正方体 (2)底面直径和高均为2的圆柱
![]()
(3)底面直径和高
均为2的圆锥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2015高考四川,文21】已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
设椭圆
的离心率为
,其左焦点
与抛物线
的焦点相同.
![]()
(1)求此椭圆的方程;
(2)若过此椭圆的右焦点
的直线
与曲线
只有一个交点
,则
①求直线
的方程;
②椭圆上是否存在点
,使得
,若存在,请说明一共有几个点;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一个年度未发生有责任道路交通事故 | 下浮10% |
| 上两个年度未发生有责任道路交通事故 | 下浮20% |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
| 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
![]()
(1)根据条件完成下列![]()
列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
愿意 | 不愿意 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为![]()
,记甲通过的关数为![]()
,求![]()
的分布列和数学期望.
参考公式与数据:
| 0.1 | 0.05 | 0.025 | 0.01 |
| 2.706 | 3.841 | 5.024 | 6.635 |
![]()
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com