精英家教网 > 高中数学 > 题目详情
设集合W由满足下列两个条件的数列{an}构成:
;②存在实数M,使an≤M.(n为正整数).在以下数列
(1){n2+1};  (2);  (3);  (4)
中属于集合W的数列编号为( )
A.(1)(2)
B.(3)(4)
C.(2)(3)
D.(2)(4)
【答案】分析:根据集合W是否满足①;②存在实数M,使an≤M.(n为正整数)这两个条件的集合,说明根据函数的单调性,判定数列是否存在最大值,从而可判定选项.
解答:解:(1)∵
∴an+an+2-2an+1=n2+1+(n+2)2+1-2(n+1)2-2
=n2+n2+4n+4-2(n2+2n+1)
=2>0,

∴(1)不属于集合W;
(2)∵an=
∴an+an+2-2an+1=+-2×
=1-+1--2+
=--<0,
∴①成立.
an==1-<1,
满足集合W的两个条件,从而可知(2)属于集合W;
(3)∵
∴an+an+2-2an+1=2++2+-4-
=>0,

∴(3)不属于集合W;
(4)由an=1-,得an+an+2-2an+1≤0
所以数列{an}满足①
当n趋向无穷大时,an=1-趋近于1,故an<1,
满足集合W的两个条件,从而可知(4)属于集合W
故(2)(4)正确,
故选D.
点评:本题主要考查了数列的综合应用,以及数列的单调性,同时考查了了分析问题的能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设集合W由满足下列两个条件的数列{an}构成:
an+an+22
an+1
;②存在实数M,使an≤M.( n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1,试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是等差数列,Sn是其前n项和,c3=4,S3=18,证明数列{Sn}∈W;并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,且对满足条件的常数M,存在正整数k,使dk=M.
求证:dk+1>dk+2>dk+3

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合W由满足下列两个条件的数列{an}构成:①
an+an+2
2
an+1
;②存在实数M,使an≤M.(n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3=
1
4
S3=
7
4
,试证明{Sn}∈W,并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M0,都有dn≠M0(n∈N*).求证:数列{dn}单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)设集合W由满足下列两个条件的数列{an}构成:
an+an+2
2
an+1
;②存在实数M,使an≤M.(n为正整数).在以下数列
(1){n2+1};  (2){
2n+9
2n+11
}
;  (3){2+
4
n
}
;  (4){1-
1
2n
}

中属于集合W的数列编号为(  )

查看答案和解析>>

科目:高中数学 来源:北京市丰台区2010届高三一模考试(数学理) 题型:解答题

(14分)设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的M的最小值M0,都有.
求证:数列单调递增.

查看答案和解析>>

科目:高中数学 来源:2010年北京市丰台区高三下学期一模数学(文)测试 题型:解答题

(14分)
设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是等差数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的常数M,存在正整数k,使
求证:

查看答案和解析>>

同步练习册答案