精英家教网 > 高中数学 > 题目详情

设函数

(Ⅰ)若,函数是否有极值,若有则求出极值,若没有,请说明理由.

(Ⅱ)若在其定义域内为单调函数,求实数p的取值范围.

(Ⅰ)函数没有极值.  (Ⅱ)


解析:

(Ⅰ);  ……3分

    \函数没有极值.                           ……………………6分

(Ⅱ)定义域为.令

要使单调,只需恒成立      ……………8分

当p=0时, \函数单调递减  ……10分

时,,即       ……12分

时,上单调递减,又满足题意,综上  …14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为“有界泛函”,给出以下函数:(1)f(x)=x2;(2)f(x)=2x(3)f(x)=
x
x2+x+1
;(4)f(x)=xsinx.其中是“有界泛函”的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为有界泛函.在函数
①f(x)=-5x,
②f(x)=x2
③f(x)=sin2x,
④f(x)=(
12
)x

⑤f(x)=xcosx
中,属于有界泛函的有
①⑤
①⑤
(填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆二模)设函数f(x)的定义域为R.若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为有界泛函.在函数:
①f(x)=-3x,
②f(x)=x2
③f(x)=sin2x,
④f(x)=2x
⑤f(x)=xcosx
中,属于有界泛函的有
①③⑤
①③⑤
.(填上所有正确的番号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案