精英家教网 > 高中数学 > 题目详情
作出函数f(x)=
x2,x≤0
lg(x+1),x>0
的图象,并解关于x的不等式f(x)>1.
分析:作出其图象,再分段解不等式求f(x)>1的解集.当x≤0时,解x2>1,当x>0时解lg(x+1)>1,最后再将所得结果并起来.
解答:解:函数f(x)=
x2,x≤0
lg(x+1),x>0
的图象如图
当x<0时,f(x)>1即x2>1,解得,x>1或x<-1,故x<-1
当x>0时,f(x)>1,即lg(x+1)>1,解得x+1>10,得x>9
综上得关于x的不等式f(x)>1的解集是(-∞,-1)∪(9,+∞)
精英家教网
点评:考查二次函数与对数函数作图,以及二次方程与对数方程的性质.本题是分段函数中较基本的类型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

min{s1,s2,┅,sn},max{s1,s2,┅,sn}分别表示实数s1,s2,┅,sn中的最小者和最大者.
(1)作出函数f(x)=|x+3|+2|x-1|(x∈R)的图象;
(2)在求函数f(x)=|x+3|+2|x-1|(x∈R)的最小值时,有如下结论:f(x)min=min{f(-3),f(1)=4.请说明此结论成立的理由;
(3)仿照(2)中的结论,讨论当a1,a2,┅,an为实数时,函数f(x)=a1|x-x1|+a2|x-x2|+┅+an|x-xn|(x∈R,x1<x2<┅<xn∈R)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在给定的坐标系内作出函数f(x)=x2-1的图象,并回答下列问题
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)写出函数f(x)的单调减区间,并用函数单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
1
x+a
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
1
x+a
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
1
x+a
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-m|(x∈R),且f(1)=0.
(1)求m的值,并用分段函数的形式来表示f(x);
(2)在如图给定的直角坐标系内作出函数f(x)的草图(不用列表描点);
(3)由图象指出函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案