精英家教网 > 高中数学 > 题目详情
f(x)定义域为D={x|log2(
4|x|
-1)≥1}
,又对于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)将D用区间表示;
(2)求证:f(1)=f(-1).
分析:(1)由log2(
4
|x|
-1)≥1
可得
4
|x|
-1≥2
,解不等式可求D
(2)利用赋值,令x1=x2=1,可求f(1),令x1=x2=-1,可求f(-1),从而可证
解答:解:(1)∵log2(
4
|x|
-1)≥1

4
|x|
-1≥2
…(2分)
4
|x|
≥3

|x|≤
4
3

x∈[-
4
3
4
3
]
且x≠0
D=[-
4
3
,0)∪(0,
4
3
]
…(6分)
证明:(2)令x1=x2=1,则f(1)=f(1)+f(1)
∴f(1)=0
令x1=x2=-1,则f(1)=f(-1)+f(-1)
∴f(-1)=0
所以f(1)=f(-1)…(12分)
点评:本题主要考查了利用对数函数的单调性求解不等式,绝对值不等式的求解及利用赋值求解抽象函数的函数值,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)定义域为D={x|log2(
4|x|
-1)≥1},当x>0时f(x)单调递增
,又对于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)将D用区间表示;
(2)求证:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

科目:高中数学 来源:山西省康杰中学2010-2011学年高二下学期期中试题数学文科试卷 题型:044

函数f(x)定义域为D={x|x≠0},且对任x1、x2∈D有f(x1·x2)=f(x1)+f(x2)且当x>1时有f(x)>0

①求f(-1)的值

②判断f(x)奇偶性与f(x)在(0,+∞)的单调性,并给予证明

③解不等式f(a)<f(2-a)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)定义域为D={x|log2(
4
|x|
-1)≥1}
,又对于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)将D用区间表示;
(2)求证:f(1)=f(-1).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)定义域为D={x|log2(
4
|x|
-1)≥1},当x>0时f(x)单调递增
,又对于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)将D用区间表示;
(2)求证:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

同步练习册答案