【题目】如图,在边长为1的正方形内作两个互相外切的圆,同时每一个圆又与正方形的两相邻边相切,当一个圆为正方形内切圆时半径最大,另一圆半径最小,记其中一个圆的半径为x,两圆的面积之和为S,将S表示为x的函数。
![]()
求:(1)函数
的解析式;
(2)
的值域.
科目:高中数学 来源: 题型:
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为![]()
![]()
(1)求频率分布图中
的值,并估计该企业的职工对该部门评分不低于80的概率;
(2)从评分在
的受访职工中,随机抽取2人,求此2人评分都在
的概率..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
,
,
,
为线段
的中点,将
沿
折起,使平面
平面
,得到几何体
.
(1)若
分别为线段
的中点,求证:
平面
;
(2)求证:
平面
;
(3)求
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位三十岁到四十岁的公务员,得到如下列联表,因不慎丢失部分数据.
(1)完成表格数据,判断是否有99%以上的把握认为“生二胎意愿与性别有关”并说明理由;
(2)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省妇联的人数为X,求X的分布列及数学期望E(X).
男性公务员 | 女性公务员 | 总计 | |
有意愿生二胎 | 15 | 45 | |
无意愿生二胎 | 25 | ||
总计 |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),a+b+c=0,且f(0)f(1)>0,设x1 , x2是方程f(x)=0的两个根,则|x1﹣x2|的取值范围为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下频率分布表.根据相关信息回答下列问题:![]()
(1)求a,b的值,并画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数在[60,80)内学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人的分数在[70,80)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅱ)现已知A,B,C三人获得优秀的概率分别为
,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附:
,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程
.
(Ⅰ)若此方程表示圆,求
的取值范围;
(Ⅱ)若(Ⅰ)中的圆与直线
相交于
,
两点,且
(
为坐标原点),求
;
(Ⅲ)在(Ⅱ)的条件下,求以
为直径的圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com