【题目】若以曲线
上任意一点
为切点作切线
,曲线上总存在异于
的点
,以点
为切点作切线
,且
,则称曲线
具有“可平行性”,现有下列命题:
①函数
的图象具有“可平行性”;
②定义在
的奇函数
的图象都具有“可平行性”;
③三次函数
具有“可平行性”,且对应的两切点
,
的横坐标满足
;
④要使得分段函数
的图象具有“可平行性”,当且仅当
.
其中的真命题个数有()
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根。
①函数y=(x2)2+lnx,则y′=2(x2)+
=
(x>0),方程
,即2x2(4+a)x+1=0,当
时有两个相等正根,不符合题意;
②定义在(∞,0)∪(0,+∞)的奇函数,如y=x3, 则
,方程
,当
时有两个相等实数根,不符合题意;
③三次函数f(x)=x3x2+ax+b,则f′(x)=3x22x+a,满足题意时,
的一元二次方程
的实数根,即
,命题③正确;
④函数y=ex1(x<0),y′=ex∈(0,1),
函数y=x+1x,y′=11x2=x21x2=11x2,由11x2∈(0,1),得1x2∈(0,1),∴x>1,则m=1.
故要使得分段函数
的图象具有“可平行性”,
当
时,
,且导函数单调递增,
当
时,
的值域应该是
,
结合幂函数的性质和函数的平移性质可得导函数在
上单调递增,且
,
,据此可得m=1.
真命题个数为2个.
本题选择B选项.
科目:高中数学 来源: 题型:
【题目】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中, 已知定圆
,动圆
过点
且与圆
相切,记动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设
是曲线
上两点,点
关于
轴的对称点为
(异于点
),若直线
分别交
轴于点
,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,台风中心从A地以每小时20千米的速度向东北方向(北偏东
)移动,离台风中心不超过300千米的地区为危险区域.城市B在A地的正东400千米处.请建立恰当的平面直角坐标系,解决以下问题:
![]()
(1) 求台风移动路径所在的直线方程;
(2)求城市B处于危险区域的时间是多少小时?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区一住户在楼顶违规私自建了“阳光房”,该小区其他居民对此意见很大,通过物业和城管部门多次上门协调,该住户终于拆除了“阳光房”,对此有人认为既然已经建成再拆除太可惜了,为此业主委员会通过随机询问小区100名性别不同的居民对此件事情的看法,得到如下的2×2列联表
认为应该拆除 | 认为太可惜了 | 总计 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
总计 | 75 | 25 | 100 |
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
K2=
,其中n=a+b+c+d
参照附表,由此可知下列选项正确的是( )
A.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“是否认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“是否认为拆除太可惜了与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+
(ab≠0).
(1)当b=a=1时,求函数f(x)的单调区间;
(2)若函数f(x)在点(2,f(2))处的切线方程是y=2x﹣3,证明:曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2=
,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com