精英家教网 > 高中数学 > 题目详情
已知等比数列{an}中,各项都是正数,且a1
1
2
a3,2a2
成等差数列,则
a9+a10
a7+a8
=
 
分析:先根据等差中项的性质可知得2×(
1
2
a3
)=a1+2a2,进而利用通项公式表示出q2=1+2q,求得q,然后把所求的式子利用等比数列的通项公式化简后,将q的值代入即可求得答案.
解答:解:依题意可得2×(
1
2
a3
)=a1+2a2
即,a3=a1+2a2,整理得q2=1+2q,
求得q=1±
2

∵各项都是正数,
∴q>0,q=1+
2

a9+a10
a7+a8
=
a1q8 +a1q9
a1q6+a1q7
=q2=3+2
2

故答案为:3+2
2
点评:本题主要考查了等差数列和等比数列的性质.考查了学生综合分析的能力和对基础知识的理解.学生在求出q值后应根据等比数列的各项都为正数,舍去不合题意的公比q的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案