【题目】已知锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=2,b2+c2﹣bc=4,则△ABC的面积的取值范围是( )
A.(
,
]
B.(0,
]
C.(
,
]
D.(
,
)
【答案】C
【解析】解:∵a=2,b2+c2﹣bc=4,
∴cosA=
=
,
∴由A为锐角,可得:A=
,sinA=
,B+C=
,
∵由正弦定理可得:
,可得:b=
sinB,c=
sin(
﹣B),
∴S△ABC=
bcsinA
=
×
sinB×
sin(
﹣B)
=
sinB(
cosB+
sinB)
=sin2B﹣
cos2B+ ![]()
=
sin(2B﹣
)+
,
∵B,C为锐角,可得:
<B<
,
<2B﹣
<
,可得:sin(2B﹣
)∈(
,1],
∴S△ABC=
sin(2B﹣
)+
∈(
,
].
所以答案是:C.
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设函数
的定义域为
,如果存在函数
,使得
对于一切实数
都成立,那么称
为函数
的一个承托函数.
已知函数
的图象经过点
.
(
)若
,
,写出函数
的一个承托函数(结论不要求注明).
(
)判断是否存在常数
,
,
,使得
为函数
的一个承托函数,且
为函数
的一个承托函数?若存在,求出
,
,
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.
(1)求圆C的方程;
(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点P为有公共焦点F1 , F2的椭圆和双曲线的一个交点,且cos∠F1PF2=
,椭圆的离心率为e1 , 双曲线的离心率为e2 , 若e2=2e1 , 则e1=( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,满足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求证:
;
(2)若{an}是等比数列,求数列{an}的通项公式;
(3)设数列{an}的前n项和为Sn , 求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,2a9=a12+13,a2=5,其前n项和为Sn .
(1)求数列{an}的通项公式;
(2)求数列{
}的前n项和Tn , 并证明Tn<
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】轮船A从某港口O将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以30海里/小时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以V海里/小时的航速匀速行驶,经过t小时与轮船B相遇.
(1)若使相遇时轮船A航距最短,则轮船A的航行速度大小应为多少?
(2)假设轮船A的最高航行速度只能达到30海里/小时,则轮船A以多大速度及什么航行方向才能在最短时间与轮船B相遇,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com