【题目】平面直角坐标系中,直线l的参数方程是
(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A、B两点,求|AB|.
【答案】解:(1)直线l的参数方程是
(t为参数),化为普通方程得:y=
x
∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是
,
因此,直线l的极坐标方程是θ=
,(ρ∈R);
(2)把θ=
代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣
ρ﹣3=0
∴由一元二次方程根与系数的关系,得ρ1+ρ2=
,ρ1ρ2=﹣3,
∴|AB|=|ρ1﹣ρ2|=
=
.
【解析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为
的直线,由此不难得到直线l的极坐标方程;
(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.
科目:高中数学 来源: 题型:
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:
)的分组区间为
,
,
,
,
,将其按从左到右的顺序分别编号为第一组,第二组,
,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,在平面直角坐标系
中,直线
经过点
,倾斜角
.
(1)写出曲线
的直角坐标方程和直线
的参数方程;
(2)设
与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,侧面
⊥底面
,底面
为直角梯形,
//
,
,
,
,
为
的中点.
![]()
(Ⅰ)求证:PA//平面BEF;
(Ⅱ)若PC与AB所成角为
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对两个变量x , y进行回归分析,得到一组样本数据:(x1 , y1),(x2 , y2),…(xn , yn),则下列说法中不正确的是( )
A.由样本数据得到的回归方程
必过样本点的中心 ![]()
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好
D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)
表示开始第4次发球时乙的得分,求
的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·新课标I卷)选修4-5:不等式选讲
已知函数f(x)=|x+1|-2|x-a|, a>0.
(1)当a=1时求不等式f(x)>1的解集;
(2)若f(x)图像与x轴围成的三角形面积大于6,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com