【题目】已知:以点
(
)为圆心的圆与
轴交
于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线
与圆C交于点M, N,若OM = ON,求圆C的方程.
【答案】(1)根据条件写成圆的方程,求出点A,B的坐标,进而写出△OAB的面积即可得证;
(2)![]()
【解析】试题分析:(1)设出圆C的方程,求得A、B的坐标,再根据S△AOB=
OAOB,计算可得结论.
(2)设MN的中点为H,则CH⊥MN,根据C、H、O三点共线,KMN=﹣2,由直线OC的斜率
,求得t的值,可得所求的圆C的方程.
试题解析:
(1)
,
.
设圆
的方程是 ![]()
令
,得
;令
,得![]()
,即:
的面积为定值.
(2)
垂直平分线段
.
,
直线
的方程是
.
,解得:![]()
当
时,圆心
的坐标为
,
,此时
到直线
的距离
,圆
与直线
相交于两点.
当
时,圆心
的坐标为
,
,此时
到直线
的距离
圆
与直线
不相交,
不符合题意舍去.
圆
的方程为
.
科目:高中数学 来源: 题型:
【题目】某校高三共有2000名学生参加广安市联考,现随机抽取100名学生的成绩(单位:分),并列成如下表所示的频数分布表:
组别 |
|
|
|
|
|
|
频数 | 6 | 18 | 28 | 26 | 17 | 5 |
(1)试估计该年级成绩
分的学生人数;
(2)已知样本中成绩在
中的6名学生中,有4名男生,2名女生,现从中选2人进行调研,求恰好选中一名男生一名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公差不为零的等差数列{an}中,a3=7,且a2,a4,a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中国某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机
万部并全部销量完,每万部的销售收入为
万元,且![]()
(1)写出年利润
万元关于年产量
(万部)的函数解析式;
(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,0),且圆C:x2+y2﹣6x+4y+4=0.
(Ⅰ)当直线
过点P且与圆心C的距离为1时,求直线
的方程;
(Ⅱ)设过点P的直线与圆C交于A、B两点,若|AB|=4,求以线段AB为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
![]()
(1) 算出线性回归方程
; (a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.
(参考公式:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=
(m>0,n>0).
(1) 当m=n=1时,求证:f(x)不是奇函数;
(2) 设f(x)是奇函数,求m与n的值;
(3) 在(2)的条件下,求不等式f(f(x))+f
<0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(
)x.
(Ⅰ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值g(a);
(Ⅱ)在(Ⅰ)的条件下,是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com