精英家教网 > 高中数学 > 题目详情

如图,已知DE⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。

(I)求证:AF//平面BCE;

(II)求证:平面BCE⊥平面CDE;

(III)求平面BCE与平面ACD所成锐二面角的大小。

 

【答案】

(I)(II)见试题解析;(III)

【解析】

试题分析:(I)要证明线面垂直,就是要在平面BCE中找一条与AF垂直的直线,这条直线容易看出是平面BAF与平面BCE的交线,当然根据已知条件,辅助线可直接取CE中点P,直线BP就是我们要找的平等线;(II)本证面面垂直,先要证线面垂直,先看题中有没有已知的垂直关系,发现有直线AF与平面CDE垂直,而在(I)的证明中有BP//AF,BP就是我们要找的线面垂直中的线;(III)平面BCE与平面ACD有一个公共点C,依据二面角的定义,要选作出二面角的棱,然后作出平面角,才能求出二面角的大小,但由(I)题中有两两垂直的三条直线FA,FP,AD,故我们可建立空间直角坐标系,通过空间向量来求二面角大小.

试题解析:(I)解:取CE中点P,连结FP、BP,∵F为CD的中点,

∴FP//DE,且FP=  又AB//DE,且AB=

∴AB//FP,且AB=FP,  ∴ABPF为平行四边形,∴AF//BP。

又∵AF平面BCE,BP平面BCE, ∴AF//平面BCE。             3分

(II)∵△ACD为正三角形,∴AF⊥CD。∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,∴DE⊥AF。又AF⊥CD,CD∩DE=D,

∴AF⊥平面CDE。又BP//AF,∴BP⊥平面CDE。

又∵BP平面BCE,∴平面BCE⊥平面CDE。                7分

(III)由(II),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F—xyz.设AC=2,则C(0,—1,0),

显然,为平面ACD的法向量。

设平面BCE与平面ACD所成锐二面角为

即平面BCE与平面ACD所成锐二面角为45°。                13分

考点:(I)线面平行;(II)面面垂直;(III)二面角.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点
(Ⅰ) 求证:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知DE⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB=2,且F是CD的中点.
(1)求证:AF∥平面 BCE;
(2)求证:平面 BCE⊥平面 CDE.
(3)求VC-ABF:VC-ABED的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ABC为等边三角形,AD=DE=2AB,F为CD的中点.
(I)求证:AF∥平面BCE;
(II)求二面角D-BC-E的正弦值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省汕头市金山中学高三(上)开学摸底数学试卷(文科)(解析版) 题型:解答题

如图,已知DE⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB=2,且F是CD的中点.
(1)求证:AF∥平面 BCE;
(2)求证:平面 BCE⊥平面 CDE.
(3)求VC-ABF:VC-ABED的值.

查看答案和解析>>

同步练习册答案