【题目】设x,y,z为非零实数,满足xy+yz+zx=1,证明:
.
【答案】不等式的证明一般可以考虑运用作差法或者是利用分析法来证明。
【解析】
试题为使所证式有意义,
三数中至多有一个为0;据对称性,不妨设
,则
;
、当
时,条件式成为
,
,
,而
,
只要证,
,即
,也即
,此为显然;取等号当且仅当
.
、再证,对所有满足
的非负实数
,皆有
.显然,三数
中至多有一个为0,据对称性,
仍设
,则
,令
,
为锐角,以
为内角,构作
,则
,于是
,且由
知,
;于是
,即
是一个非钝角三角形.
下面采用调整法,对于任一个以
为最大角的非钝角三角形
,固定最大角
,将
调整为以
为顶角的等腰
,其中
,且设
,记
,据
知,
.今证明,
.即![]()
……①.
即要证
……②
先证
……③,即证
,
即
,此即
,也即
,即
,此为显然.
由于在
中,
,则
;而在
中,
,因此②式成为
……④,
只要证,
……⑤,即证
,注意③式以及
,只要证
,即
,也即
…⑥
由于最大角
满足:
,而
,则
,所以
,故⑥成立,因此⑤得证,由③及⑤得④成立,从而①成立,即
,因此本题得证.
科目:高中数学 来源: 题型:
【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。已知甲每轮猜对的概率是
,乙每轮猜对的概率是
;每轮活动中甲、乙猜对与否互不影响。各轮结果亦互不影响。假设“星队”参加两轮活动,求:
(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC的内切圆分别与边BC、CA、AB切于点D、E、F,AD与BE交于点P,设点P关于直线EF、FD、DE的对称点分别X、Y、Z.证明:AX、BY、CZ三线共点.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:
)数据,绘制如下折线图:
![]()
那么,下列叙述错误的是( )
A. 各月最高气温平均值与最低气温平均值总体呈正相关
B. 全年中,2月份的最高气温平均值与最低气温平均值的差值最大
C. 全年中各月最低气温平均值不高于
的月份有5个
D. 从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若非负整数m、n在求和时恰进位一次(十进制下),则称有序数对(m、n)为“好的”,那么,所有和为2014的好的有序数对的个数为__________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率是
,过点
做斜率为
的直线
,椭圆
与直线
交于
两点,当直线
垂直于
轴时
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
变化时,在
轴上是否存在点
,使得
是以
为底的等腰三角形,若存在求出
的取值范围,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com