【题目】已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)与f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.
【答案】
(1)解:∵f(xy)=f(x)+f(y),f(2)=1.
∴f(4)=f(2×2)=f(2)+f(2)=2
∴f(8)=f(4×2)=f(4)+f(2)=3
(2)解:根据题意,不等式f(x)﹣f(x﹣2)>3可变为
f(x)>f(x﹣2)+3=f(x﹣2)+f(8)=f[8(x﹣2)]
∵f(x)在(0,+∞)上是增函数,
,
解得
,
∴原不等式的解集是 ![]()
【解析】(1)直接把4分成2×2,再代入f(xy)=f(x)+f(y),结合f(2)=1即可求出f(4)的值,同理可得f(8)的值;(2)先把不等式f(x)﹣f(x﹣2)>3转化为f(x)>f(x﹣2)+3=f(x﹣2)+f(8)=f[8(x﹣2)];再结合f(x)是定义在(0,+∞)上的增函数即可求出不等式的解集.(注意其定义域的限制)
科目:高中数学 来源: 题型:
【题目】对于x∈R,[x]表示不超过x的最整数,如[1.1]=1,[﹣2.1]=﹣3.定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤
},则A中所有元素的和为( )
A.15
B.19
C.20
D.55
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在
轴上的圆
过点
和
,圆
的方程为
.
(1)求圆
的方程;
(2)由圆
上的动点
向圆
作两条切线分别交
轴于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F. ![]()
(1)证明:C,E,F,D四点共圆;
(2)若D为BC的中点,且AF=3,FD=1,求AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)+2=
,当x∈(0,1]时,f(x)=x2 , 若在区间(﹣1,1]内,g(x)=f(x)﹣t(x+2)有两个不同的零点,则实数t的取值范围是( )
A.(0,
]
B.(0,
]
C.[﹣
,
]
D.[﹣
,
]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:三棱锥
中,侧面
垂直底面,
是底面最长的边;图1是三棱锥
的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥
的直观图的一部分,其中点
在
平面内.
(Ⅰ)请在图2中将三棱锥
的直观图补充完整,并指出三棱锥
的哪些面是直角三角形;![]()
![]()
(Ⅱ)设二面角
的大小为
,求
的值;
(Ⅲ)求点
到面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com