【题目】如图,四棱锥
,平面
平面ABE,四边形ABCD为矩形,
,F为CE上的点,且
平面ACE.
![]()
(1)求证:
;
(2)设M在线段DE上,且满足
,试在线段AB上确定一点N,使得
平面BCE,并求MN的长.
科目:高中数学 来源: 题型:
【题目】记![]()
.
(1)求方程
的实数根;
(2)设
,
,
均为正整数,且
为最简根式,若存在
,使得
可唯一表示为
的形式
,试求椭圆
的焦点坐标;
(3)已知
,是否存在
,使得
成立,若存在,试求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点B(0,-2)和椭圆M:
.直线l:y=kx+1与椭圆M交于不同两点P,Q.
(Ⅰ)求椭圆M的离心率;
(Ⅱ)若
,求△PBQ的面积;
(Ⅲ)设直线PB与椭圆M的另一个交点为C,当C为PB中点时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】条件![]()
(1)条件
:复数
,指明
是
的说明条件?若
满足条件
,记
,求![]()
(2)若上问中
,记
时的
在平面直角坐标系的点
存在过
点的抛物线
顶点在原点,对称轴为坐标轴,求抛物线的解析式。
(3)自(2)中
点出发的一束光线经抛物线
上一点
反射后沿平行于抛物线
对称轴方向射出,求:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
![]()
A. 棱柱的侧面都是平行四边形
B. 所有面都是三角形的多面体一定是三棱锥
C. 用一个平面去截正方体,截面图形可能是五边形
D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.
(1)求实数a的值;
(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首项为O的无穷数列
同时满足下面两个条件:
①
;②![]()
(1)请直接写出
的所有可能值;
(2)记
,若
对任意
成立,求
的通项公式;
(3)对于给定的正整数
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com