【题目】设
、
分别是椭圆C:
的左、右焦点,
,直线1过
且垂直于x轴,交椭圆C于A、B两点,连接A、B、
,所组成的三角形为等边三角形。
(1)求椭圆C的方程;
(2)过右焦点
的直线m与椭圆C相交于M、N两点,试问:椭圆C上是否存在点P,使
成立?若存在,求出点P的坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点.求证:
⊥
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形MNCD中,MD∥NC,MN=
MD=2,∠CDM=60°,E为线段MD上一点,且ME=3,以EC为折痕将四边形MNCE折起,使MN到达AB的位置,且AE⊥DC
![]()
(1)求证:DE⊥平面ABCE;
(2)求点A到平面DBE的距离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
=2px经过点
(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018·湖南师大附中摸底)已知直线l经过点P(-4,-3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线l的方程是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了140位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合计 | 70 | 140 |
(1)根据已知数据,把表格数据填写完整;
(2)若在被调查的支持申办足球世界杯的男性市民中有5位退休老人,其中2位是教师,求从这5人中随机抽取3人至多有1人是教师的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
的焦点为
,椭圆
的中心在原点,
为其右焦点,点
为曲线
和
在第一象限的交点,且
.
![]()
(1)求椭圆
的标准方程;
(2)设
为抛物线
上的两个动点,且使得线段
的中点
在直线
上,
为定点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在
之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布
,其中
近似为样本平
均数
,
近似为样本方差
.
(i)利用该正态分布,求
;
(ii)央视媒体平台从年龄在
和
的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间
的人数是Y,求变量Y的分布列和数学期望.附:
,若
,则
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com