【题目】如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )
![]()
A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC
科目:高中数学 来源: 题型:
【题目】如图,在空间几何体ABCDFE中,底面
是边长为2的正方形,
,
,
.
(1)求证:AC//平面DEF;
(2)已知
,若在平面
上存在点
,使得
平面
,试确定点
的位置.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
过点
且与圆
相切,设圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)点
,
为曲线
上的两点(不与点
重合),记直线
的斜率分别为
,若
,请判断直线
是否过定点. 若过定点,求该定点坐标,若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若
,则称
为
的“不动点”;若
,则称
为
的“稳定点”.函数
的“不动点”和“稳定点”的集合分别记为
和
,即
,
.
(
)设函数
,求集合
和
.
(
)求证:
.
(
)设函数
,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
![]()
(1)证明:A1O∥平面B1CD1;
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
且
).
(1)函数
是否过定点?若是求出该定点,若不是,说明理由.
(2)将函数
的图象向下平移
个单位,再向左平移
个单位后得到函数
,设函数
的反函数为
,求
的解析式;
(3)在(2)的基础上,若函数
过点
,且设函数
的定义域为
,若在其定义域内,不等式
恒成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com