精英家教网 > 高中数学 > 题目详情

【题目】已知棱长为2的正方体中,EDC中点,F在线段上运动,则三棱锥的外接球的表面积最小值为( )

A.B.C.D.

【答案】C

【解析】

的中点,易知的外心,取的中点,连接,取的中点,连接,由正方体的性质可得三棱锥的外接球球心在直线上,连接,取的中点,连接,易知当即点重合时,即外接球半径最小,设,根据求得,进而可求得外接球半径,即可得解.

的中点,易知的外心,取的中点,连接,取的中点,连接

由正方体的性质可得平面

则三棱锥的外接球球心在直线上,连接

的中点,连接

由中位线的性质可得

所以,所以平面

若要使三棱锥的外接球的表面积最小,则要使其半径即最小,

易知当即点重合时,最小,

,由题意

可得,化简可得

此时,三棱锥的外接球的半径满足

所以三棱锥的外接球的表面积最小值.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定圆,动圆过点,且和圆相切.

(Ⅰ)求动圆圆心的轨迹的方程;

(Ⅱ)若直线与轨迹交于两点,线段的垂直平分线经过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像与的图像交于不同的两点线段的中点为

1)求实数的取值范围;

2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解运动健身减肥的效果,某健身房调查了20名肥胖者,测量了他们的体重(单位:千克).健身之前他们的体重情况如三维饼图(1)所示,经过半年的健身后,他们的体重情况如三维饼图(2)所示,对比健身前后,关于这20名肥胖者,下面结论正确的是(

A.他们健身后,体重在区间内的人数不变

B.他们健身后,体重在区间内的人数减少了2

C.他们健身后,体重在区间内的肥胖者体重都有减轻

D.他们健身后,这20位肥胖着的体重的中位数位于区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的312日是植树节,某公司为了动员职工积极参加植树造林,在植树节期间开展植树有奖活动,设有甲、乙两个摸奖箱,每位植树者植树每满30棵获得一次甲箱内摸奖机会,植树每满50棵获得一次乙箱内摸奖机会,每箱内各有10个球(这些球除颜色外全相同),甲箱内有红、黄、黑三种颜色的球,其中个红球,个黄球,5个黑球,乙箱内有4个红球和6个黄球,每次摸一个球后放回原箱,摸得红球奖100元,黄球奖50元,摸得黑球则没有奖金.

1)经统计,每人的植树棵数服从正态分布,若其中有200位植树者参与了抽奖,请估计植树的棵数在区间内并中奖的人数(结果四舍五入取整数);

附:若,则

2)若,某位植树者获得两次甲箱内摸奖机会,求中奖金额(单位:元)的分布列;

3)某人植树100棵,有两种摸奖方法,

方法一:三次甲箱内摸奖机会;

方法二:两次乙箱内摸奖机会;

请问:这位植树者选哪一种方法所得奖金的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,点在曲线上,直线l过点且与OM垂直,垂足为P.

1)当时,求在直角坐标系下点坐标和l的方程;

2)当MC上运动且P在线段OM上时,求点P在极坐标系下的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司准备设计一个精美的心形巧克力盒子,它是由半圆、半圆和正方形ABCD组成的,且.设计人员想在心形盒子表面上设计一个矩形的标签EFGH,标签的其中两个顶点EFAM上,另外两个顶点GHCN上(MN分别是ABCB的中点).设EF的中点为P,矩形EFGH的面积为

1)写出S关于的函数关系式

2)当为何值时矩形EFGH的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于两点,且(其中为坐标原点),若椭圆的离心率满足,则椭圆长轴的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜率为的直线过抛物线的焦点,且与拋物线交于两点.

1)设点在笫一象限,过作拋物线的准线的垂线,为垂足,且,求点的坐标;

2)过且与垂直的直线与圆交于两点,若面积之和为,求的值.

查看答案和解析>>

同步练习册答案