【题目】如图,三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=BC=
AA1,D是棱AA1的中点.
![]()
(1)证明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.
【答案】(1)见解析.(2)1:1.
【解析】
(1)由已知可以证明出
平面
,也就证明出
,在侧面
中,可以证明出
,这样可以证明
平面
,也就能证明出
平面BDC1⊥平面BDC;
(2)分别计算出棱锥B-DACC1的体积,三棱柱ABC-A1B1C1的体积,最后求出平面BDC1分此棱柱为两部分体积的比.
(1)证明 由题设知
,
,
,又
,
平面
,所以
平面
.又
平面
,所以
.
由题设知
,所以
,即
.
又
,
平面
,
所以
平面
.
又
平面
,
故平面
平面
.
(2)解 设棱锥B-DACC1的体积为V1,AC=1.
由题意得V1=![]()
又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.
故平面BDC1分此棱柱所得两部分的体积的比为1∶1.
科目:高中数学 来源: 题型:
【题目】某品牌服装店为了庆祝开业两周年,特举办“你敢买,我就送”的回馈活动,规定店庆当日进店购买指定服装的消费者可参加游戏,赢取奖金,游戏分为以下两种:
游戏 1:参加该游戏赢取奖金的成功率为
,成功后可获得
元奖金;
游戏 2:参加该游戏赢取奖金的成功率为
,成功后可得
元奖金;
无论参与哪种游戏,未成功均没有收获,每人有且仅有一次机会,且每次游戏成功与否均互不影响,游戏结束后可到收银台领取奖金。
(Ⅰ)已知甲参加游戏 1,乙参加游戏 2,记甲与乙获得的总奖金为
,若
,求
的值;
(Ⅱ)若甲、乙、丙三人都选择游戏 1或都选择游戏 2,问:他们选择何种规则,累计得到奖金的数学期望值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的左、右焦点分别为
,离心率为
,过焦点
且垂直于
轴的直线被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
为椭圆
上一动点,连接
、
,设
的角平分线
交椭圆
的长轴于点
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为降低空气污染,提高环境质量,政府决定对汽车尾气进行整治.某厂家生产甲、乙两种不同型号的汽车尾气净化器,为保证净化器的质量,分别从甲、乙两种型号的净化器中随机抽取100件作为样本进行产品性能质量评估,评估综合得分
都在区间
.已知评估综合得分与产品等级如下表:
![]()
根据评估综合得分,统计整理得到了甲型号的样本频数分布表和乙型号的样本频率分布直方图(图表如下).
![]()
甲型 乙型
(Ⅰ)从厂家生产的乙型净化器中随机抽取一件,估计这件产品为二级品的概率;
(Ⅱ)从厂家生产的乙型净化器中随机抽取3件,设随机变量
为其中二级品的个数,求
的分布列和数学期望;
(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
![]()
A. 互联网行业从业人员中90后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的20%
C. 互联网行业中从事运营岗位的人数90后比80前多
D. 互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆
的左、右焦点,
为坐标原点,点
在椭圆上,线段
与
轴的交点
满足
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)圆
是以
为直径的圆,一直线
与圆
相切,并与椭圆交于不同的两点
、
,当
,且满足
时,求
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com